Problem 2.3

(a) The quadratic and linear drag forces on a moving sphere in a fluid are given by (2.84) and (2.82) (Problems 2.4 and 2.2). Show that the ratio of these two kinds of drag force can be written as $f_{\text {quad }} / f_{\text {lin }}=R / 48,{ }^{9}$ where the dimensionless Reynolds number R is

$$
\begin{equation*}
R=\frac{D v \varrho}{\eta} \tag{2.83}
\end{equation*}
$$

where D is the sphere's diameter, v its speed, and ϱ and η are the fluid's density and viscosity. Clearly the Reynolds number is a measure of the relative importance of the two kinds of drag. ${ }^{10}$ When R is very large, the quadratic drag is dominant and the linear can be neglected; vice versa when R is very small. (b) Find the Reynolds number for a steel ball bearing (diameter 2 mm) moving at $5 \mathrm{~cm} / \mathrm{s}$ through glycerin (density $1.3 \mathrm{~g} / \mathrm{cm}^{3}$ and viscosity $12 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ at STP).

Solution

Part (a)
The quadratic drag force on a sphere in a fluid is given in Problem 2.4.

$$
\begin{equation*}
f_{\text {quad }}=\kappa \varrho A v^{2}=\frac{1}{4} \varrho A v^{2} \tag{2.84}
\end{equation*}
$$

The linear drag force on a sphere in a fluid is given in Problem 2.2.

$$
\begin{equation*}
f_{\text {lin }}=3 \pi \eta D v \tag{2.82}
\end{equation*}
$$

Therefore, the ratio of these two drag forces is [A is the cross-sectional area, $\pi r^{2}=\pi(D / 2)^{2}$]

$$
\frac{f_{\text {quad }}}{f_{\text {lin }}}=\frac{\frac{1}{4} \varrho A v^{2}}{3 \pi \eta D v}=\frac{\frac{1}{4} \varrho\left(\frac{1}{4} \pi D^{2}\right) v^{2}}{3 \pi \eta D v}=\frac{1}{48} \frac{\rho D v}{\eta}=\frac{1}{48} R .
$$

Part (b)

For a steel ball bearing with $D=2 \mathrm{~mm}$ moving through glycerin at $v=5 \mathrm{~cm} / \mathrm{s}$, the Reynolds number is

$$
\begin{aligned}
R=\frac{D v \varrho}{\eta} & =\frac{\left(2 \mathrm{~mm} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)\left(5 \frac{\mathrm{~cm}}{\mathrm{~s}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left[1.3 \frac{\mathrm{~g}}{\mathrm{~cm}}{ }^{3} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}\right]}{12 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}} \\
& \approx 0.01 .
\end{aligned}
$$

Since $R / 48 \approx 0.0002 \ll 1$, the quadratic drag force is negligible compared to the linear drag force.

[^0]
[^0]: ${ }^{9}$ The numerical factor 48 is for a sphere. A similar result holds for other bodies, but the numerical factor is different for different shapes.
 ${ }^{10}$ The Reynolds number is usually defined by (2.83) for flow involving any object, with D defined as a typical linear dimension. One sometimes hears the claim that R is the ratio $f_{\text {quad }} / f_{\text {lin }}$. Since $f_{\text {quad }} / f_{\text {lin }}=R / 48$ for a sphere, this claim would be better phrased as "R is roughly of the order of $f_{\text {quad }} / f_{\text {lin }}$."

